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Preface

This is the reference manual of GPUMD (version 1.0), a molecular dynamics simulation
code implemented fully on graphics processing units (GPUs). GPUMD stands for Graphics
Processing Units Molecular Dynamics.

One of the major features of GPUMD is that force evaluation for many-body potentials,
such as the Tersoff potential and the Stillinger-Weber potential, has been significantly accel-
erated using GPUs. The major effort we would like to make in the future is to implement
many other important many-body potentials, such as the EAM/MEAM potentials and the
Brenner/REBO/LCBOP potentials.

You can send an email to the first author (zheyong.fan@aalto.fi) if you find errors in the
manual or bugs in the source code, or have any question about the manual and code.

Note that you don’t need to read the whole manual before starting to use GPUMD. If you
are not interested in the theoretical formalisms and algorithms, you can safely skip chapter 2.
Only chapters 3 and 4 are essential to understanding how to use GPUMD.

We acknowledge the computational resources provided by Aalto Science-IT project and
Finland’s IT Center for Science (CSC). We also thank the great help from the CUDA experts
from NVIDIA and CSC during the GPU hackathon (13-09-2016 to 16-09-2016) organized by
Sebastian von Alfthan.



ii



Contents

1 Features and non-features of GPUMD 1
1.1 GPU-accelerated force evaluation for many-body potentials . . . . . . . . . . . . 1
1.2 Utilities for computing thermal conductivity and related quantities . . . . . . . 1
1.3 Other MD features and non-features of GPUMD . . . . . . . . . . . . . . . . . . 2

1.3.1 Neighbor list construction . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Box and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3.3 Integrators and thermostats/barostats . . . . . . . . . . . . . . . . . . . 2

2 Theoretical formalisms and algorithms 3
2.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Overall structure of the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Neighbour list construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 The simple O(N2)-scaling method . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 A fast O(N)-scaling method . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Force evaluation and related calculations . . . . . . . . . . . . . . . . . . . . . . 5
2.4.1 Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4.2 Virial and pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Heat current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Integration by one step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 The NVE ensemble and the velocity-Verlet algorithm . . . . . . . . . . . 11
2.5.2 Berendsen thermostat and barostat . . . . . . . . . . . . . . . . . . . . . 13
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Chapter 1

Features and non-features of GPUMD

1.1 GPU-accelerated force evaluation for many-body po-

tentials

The major advantage of GPUMD over other public molecular dynamics (MD) packages
is that force evaluation for many-body potentials, such as the Tersoff potential [1] and the
Stillinger-Weber potential [2], has been significantly accelerated by using GPUs. Our effi-
cient and flexible GPU-implementation of the force evaluation for many-body potentials relies
on a new force expression derived in Ref. [3]. Using the new formula, the resulting GPU-
implementation is nearly identical to the CPU implementation. See Ref. [4] for details of the
performance evaluation.

The current version of GPUMD only uses one GPU card in a single run. We are currently
working on multi-GPU extensions. Every functionality in GPUMD has a pure-CPU version as
well as a GPU version. Therefore, if you don’t have GPUs, you can also use the pure-CPU
version of the code. The pure-CPU version is serial and is mostly used for the purpose of
validation.

1.2 Utilities for computing thermal conductivity and re-

lated quantities

GPUMD has mostly been used to study heat transport so far. It has very handy commands
to calculate thermal conductivity and related quantities.

In the current version of GPUMD, we have implemented the Green-Kubo method for com-
puting the lattice thermal conductivity. In this method, one first computes the heat current
autocorrelation (HAC) and then calculates the lattice thermal conductivity using the Green-
Kubo formula. This is also called the equilibrium MD method because the heat current is
calculated in equilibrium states. In Ref. [3], it has been shown that the (microscopic) heat cur-
rent formula for many-body potentials differs from that for two-body potentials. The correct
heat current formula has been implemented in GPUMD.

A related quantity is phonon density of states (PDOS), which can be computed from velocity
autocorrelation function (VAC) by discrete Fourier transform. The same VAC can also be
used to compute diffusion constant using the Green-Kubo formula, which is equivalent to that
obtained from the mean square displacement (MSD) using Einstein’s relation.

We are currently working on implementing other methods for heat transport calculations,
such as the direct method (the nonequilibrium MD method) and methods for spectral decom-
position.
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2 CHAPTER 1. FEATURES AND NON-FEATURES OF GPUMD

1.3 Other MD features and non-features of GPUMD

1.3.1 Neighbor list construction

GPUMD has a simple O(N2) Verlet-list method as well as a fast O(N) cell-list method
for neighbour list construction. The O(N2) version is slow for large systems but is simpler to
implement and can be used for validating more advanced implementations. The O(N) version
is much faster for large systems and is the default version used in GPUMD.

Note that in the current version, we have only considered systems with fixed topology,
where the neighbor list does not need to be updated. We are still working on improving the
data structures and functions (kernels) related to the neighbor list. The next version of GPUMD
will be able to simulate processes involving melting, diffusion, or fracture.

1.3.2 Box and boundary conditions

The current version of GPUMD only supports rectangular simulation box with periodic or
open (free) boundary conditions in each direction.

The minimum image convention is used in neighbor list construction and force evaluation
in directions with periodic boundary conditions.

1.3.3 Integrators and thermostats/barostats

The velocity-Verlet [5] integration scheme is used for all the statistical ensembles.
Apart from the NV E ensemble (microscopic ensemble), GPUMD also supports the NV T

ensemble (canonical ensemble) and the NPT ensemble (isothermal-isobaric ensemble).
For the NV T ensemble, two methods are implemented: the Berendsen weak-coupling ther-

mostat [6] and the Nosé-Hoover chain thermostat [7–9].
For the NPT ensemble, only the Berendsen weak-coupling barostat [6] is implemented.

We are currently working on implementing the MTTK (Martyna, Tuckerman, Tobias, and
Klein) [10–12] method.



Chapter 2

Theoretical formalisms and algorithms

This chapter assumes that the reader is familiar with CUDA programming [14] and is more
technically involved than the other chapters. Skipping this chapter does not prevent using
the code correctly and fluently. If you are not interested in the details of the formalisms and
algorithms, you can move on to the next chapter.

2.1 Units

The basic units in the numerical calculations are chosen to be

1. Energy: eV (electron volt)

2. Length: Å (angstrom)

3. Mass: amu (atomic mass unit)

4. Temperature: K (kelvin)

5. Charge: e (elementary charge)

The purpose of using these units is to make the values of most quantities in the code close to
unity. The units for all the other quantities are thus fixed. Here are some examples:

1. Time: Å amu1/2 eV−1/2, which is about 10 fs

2. Velocity: eV1/2 amu−1/2, which is about 0.1 Å/fs = 10 km/s

3. Force: eV/Å

4. Boltzmann’s constant: kB ≈ 0.863× 10−4 eV/K

5. Electrostatic constant: kC = 1
4πε0
≈ 14.4 eV Åe−2

Note that the input and output files do not necessary adopt these units. For example, pressure
(stress) in both input and output files is in unit of GPa, rather than eV Å−3.

2.2 Overall structure of the code

Taking the GPU version as an example, the overall structure of the code can be expressed
as follows:

1. Initialization:

3



4 CHAPTER 2. THEORETICAL FORMALISMS AND ALGORITHMS

(a) Reading in input data from files and allocate memory on the CPU and GPU.

(b) Initializing positions, velocities, neighbour list, and forces.

2. Evolving the system by a number of steps. Each step consists of the following possible
calculations:

(a) Updating the neighbour list with a frequency according to the input.

(b) Integrating the equations of motion by one step according to the ensemble type and
other external conditions.

(c) Outputting data to files or save them to memory for later postprocessing.

3. Postprocessing, including

(a) VAC calculation.

(b) HAC calculation.

4. Repeating the above two steps as many times as you want.

5. Finalizing: free the memory used.

2.3 Neighbour list construction

2.3.1 The simple O(N 2)-scaling method

Algorithm 1 presents the pseudo code of constructing the Verlet neighbour list, which has
an O(N2) scaling with respect to the number of atoms N .

In this kernel, the block size is Sb and the grid size is dN/Sbe. The if statement is used to
avoid manipulating invalid memory. These tricks apply to many of the other kernels.

2.3.2 A fast O(N)-scaling method

This method partitions the system into cells and only searches for neighbours in the closest
cells to avoid unnecessary comparisons between particles that are far away from each other.
The cells are identical rectangular cubes with edge length of rc, the neighbour cutoff distance.
In case the system size is not a multiple of rc in one or more dimensions, the outermost cells
in those dimensions are made larger such that the system size is filled. This choice of cell
dimensions is optimal, because it is the minimal size that guarantees that all neighbours of
particle residing in cell j can be found in the neighbouring cells of j.

The pseudo-code of this method is outlined in Algorithm 2. The steps of the algorithm have
been described in more detail in Algorithms 3 - 6, together with the algorithm for calculating
the cell index for a given particle. The algorithms are presented in serial way for clarity, but
they are ready to be parallelized by replacing the outermost for-loops with kernel calls similar
to Algorithm 1. For the cumulative sum, we have used the thrust::exclusive scan function
from the thrust library.

At first glance it may seem that Algorithm 5 has some redundant calculation, since the
count of particles in cell j is calculated twice. It is however necessary, because of the way we
store the cell contents in a single array of length N . Even with doing some extra calculation
and despite using the atomic operations, the time used for this part is negligible compared to
the total time of neighbour list construction.
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Algorithm 1 The O(N2) method of neighbour list construction

Require: b is the block index
Require: t is the thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: N is the number of particles
Require: r2

c is the square of the cutoff distance for building the neighbor list
Require: NNi is the number neighbours for particle i
Require: NLik is the index of the kth neighbour of particle i
Require: ri is the position vector of particle i
1: k ← 0
2: if i < N then
3: load ri from the global memory
4: for j = 0 to N − 1 do
5: if j = i then
6: Continue
7: end if
8: load rj from the global memory and calculate rij = rj − ri
9: apply the minimum image convention to rij
10: if |rij|2 < r2

c then
11: NLik ← j
12: k ← k + 1
13: end if
14: end for
15: NNi ← k
16: end if

Algorithm 2 The O(N) method of neighbour list construction

1: Determine number of cells
2: Construct a list of particles contained in each cell
3: Construct the neighbour list based on this list

2.4 Force evaluation and related calculations

2.4.1 Force

In classical molecular dynamics, the total potential energy U of a system can be written as
the sum of site energies Ui

U =
N∑
i=1

Ui. (2.1)

The site energy can have different forms in different potential models. Although there are
numerous potential models proposed to date, they can be largely classified into two groups:
two-body potentials and many-body potentials.

For two-body potentials, the site potential Ui can be expressed as

Ui =
1

2

∑
j 6=i

Uij(rij). (2.2)

Here, rij = |rj − ri| is the distance between particles i and j and Uij(rij) is the pair potential
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Algorithm 3 Determine number of cells

Require: Ld is the length of simulation box in dimension d
Require: rc is the neighbour cutoff distance
Require: Ncells is the total number of cells in the system
1: for d = {x, y, z} do
2: Nd ← bLd/rcc
3: end for
4: Ncells ← NxNyNz

Algorithm 4 Calculate cell index from ri

Require: i is the index of the particle
Require: ri is the position vector of particle i
Require: rc neighbour cutoff distance
Require: Nd is the number of cells in dimension d
Require: I is the index of the cell i belongs to
1: for d in {x, y, z} do

2: Id ← br(d)
i /rcc

3: if Id ≥ Nd then
4: Id ← Id −Nd

5: end if
6: if Id < 0 then
7: Id ← Id +Nd

8: end if
9: end for
10: I ← Ix + IyNx + IzNxNy

Algorithm 5 Cell content construction

Require: ri is the position vector of particle i
Require: Cj is the count of particles in cell j
Require: Sj is the cumulative sum of Cj
1: Initialize Cj = 0
2: for i = 0 to N − 1 do
3: Calculate cell index j from ri
4: Atomic operation: Cj ← Cj + 1
5: end for
6: for i = 0 to Ncells − 1 do
7: Calculate Sj =

∑
0,j−1Cj

8: end for
9: Initialize Cj = 0
10: for i = 0 to N − 1 do
11: Calculate cell index j from ri
12: CC[Sj + Cj]← i
13: Atomic operation: Cj ← Cj + 1
14: end for
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Algorithm 6 Neighbour list construction

Require: Ncells is the total number of cells
Require: Cj is the number of particles in cell j
Require: Sj is the cumulative sum of Cj
Require: CC is the array of cell contents
Require: rc is neighbour cutoff distance
Require: NLam is the mth neighbour of particle a
Require: NNa is the number of neighbours for particle a
1: for j = 0 to Ncells − 1 do
2: for n1 = 0 to Cj − 1 do
3: a← CC[Sj + n1]
4: m← 0
5: for k in cells neighbouring j do
6: for n2 = 0 to Ck − 1 do
7: b← CC[Sk + n2]
8: rba = rb − ra
9: apply the minimum image convention to rba
10: if |rba|2 < r2

c then
11: NLam ← j
12: m← m+ 1
13: end if
14: end for
15: end for
16: NNa ← m
17: end for
18: end for

between them. The total force acted on particle i can be derived to be:

F i = −∇iU =
∑
j 6=i

∂Uij(rij)

∂rij

rij
rij
. (2.3)

In this manual, we use the the symbol rij to denote the position difference vector from particle
i to j:

rij ≡ rj − ri . (2.4)

The reader should bear this in mind when comparing the formulas in this manual with those
in the literature, because many authors have used the opposite sign convention. One can also
write the total force on particle i in the following form:

F i =
∑
j 6=i

F ij, (2.5)

where

F ij =
∂Uij(rij)

∂rij

rij
rij

(2.6)

is the pairwise force acted on particle i by particle j. Newton’s third law is apparently valid
here, in the sense that

F ij = −F ji. (2.7)

In some many-body potentials such as the embedded-atom potential [13], the site potential
can not be written in the form of Eq. (2.2). In some other many-body potentials such as the
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Tersoff potential, the site potential can be written in the form of Eq. (2.2), but the Uij in this
equation does not only depend on the distance between particles i and j. The force formulas
for many-body potentials have confused the community a lot. Recently, a well-defined force
expression for general many-body potentials that respects Newton’s third law explicitly has
been derived as [3]:

F i =
∑
j 6=i

F ij (2.8)

where

F ij = −F ji =
∂Ui
∂rij

− ∂Uj
∂rji

. (2.9)

2.4.2 Virial and pressure

Stress (tensor) is an important quantity in MD simulations. It consists of two parts: a virial
part which is related to the force and an ideal-gas part which is related to the temperature.
The virial part must be calculated along with force evaluation.

The validity of Newton’s third law is crucial in simplifying the calculation of the virial stress.
We know that the virial stress tensor is defined as 1

W =
∑
i

Wi, (2.10)

Wi = ri ⊗ F i. (2.11)

Here, Wi can be regarded as the per-atom virial stress. For periodic systems, the presence of
absolute positions ri would cause problems. However, when Newton’s third law is valid, one
can rewrite the per-atom virial stress as

Wi = −1

2

∑
j 6=i

rij ⊗ F ij, (2.12)

where only relative positions rij are involved. Because Newton’s third law also applies to
many-body potentials, the above expression of virial stress is valid for any classical potential.

The ideal-gas part of the stress is isotropic, which is given by the ideal-gas pressure:

pideal =
NkBT

V
, (2.13)

where N is the number of particles, kB is Boltzmann’s constant, T is the absolute temperature,
and V is the volume.

Combining the ideal-gas part and the virial part, the total stress tensor σαβ can be expressed
as:

σαβ = − 1

2V

∑
i

∑
j 6=i

rαijF
β
ij +

NkBT

V
. (2.14)

Here, α and β can be x, y, and z. In some cases, we are only interested in the diagonal terms:

σxx = − 1

2V

∑
i

∑
j 6=i

xijF
x
ij +

NkBT

V
. (2.15)

σyy = − 1

2V

∑
i

∑
j 6=i

yijF
y
ij +

NkBT

V
. (2.16)

1We use letters in bold face like W to denote tensors and letters in italic bold face like F to denote vectors.
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σzz = − 1

2V

∑
i

∑
j 6=i

zijF
z
ij +

NkBT

V
. (2.17)

If the system is isotropic, we usually average these diagonal terms to get a scalar, which is
usually called the pressure:

p =
1

3
(σxx + σyy + σzz) = − 1

6V

∑
i

∑
j 6=i

rij · F ij +
NkBT

V
. (2.18)

2.4.3 Heat current

GPUMD can be used to compute the lattice thermal conductivity using the Green-Kubo
formula, which requires calculating the microscopic heat current. Similar to stress, heat current
consists of two parts, a part related to force (usually called the potential part) and a part related
to particle movements (usually called the kinetic part or the convective part). The potential
part should be calculated along with force evaluation.

In classical physics, the heat current vector J is defined to be the time derivative of the
sum of the energy moments:

J =
d

dt

∑
i

riEi. (2.19)

Here, Ei is the site energy of particle i, which is the sum a the kinetic energy and the potential
energy:

Ei =
1

2
miv

2
i + Ui. (2.20)

Using Lebniz’s rule, we have

J =
∑
i

viEi +
∑
i

ri
d

dt
Ei. (2.21)

The first term on the right hand side is usually called the convective term and we do not need
to evaluate it in the force-evaluation kernel. The second term

Jpot =
∑

ri
dEi
dt

(2.22)

is usually called the potential term and needs to be evaluated in the force-evaluation kernel.
When using the Green-Kubo method, we need to use periodic boundary conditions (at

least along the transport directions). For two-body potentials, we can arrive at the following
expression which is suitable for implementation:

Jpot = −1

2

∑
i

∑
j 6=i

rij (F ij · vi) . (2.23)

This equation can be expressed in an equivalent way:

Jpot = −1

2

∑
i

∑
j 6=i

(rij ⊗ F ij) · vi. (2.24)

Therefore, we can also write it in terms of the per-atom virial:

Jpot =
∑
i

Wi · vi. (2.25)
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We can also define the per-atom heat current Jpot
i for the potential part in the following way:

Jpot =
∑
i

Jpot
i , (2.26)

Jpot
i = Wi · vi. (2.27)

However, we note that the above formula only applies to two-body potentials. For many-
body potentials, it has been demonstrated [3] that the above virial-based formula is wrong and
the correct one is

Jpot =
∑
i

Jpot
i , (2.28)

Jpot
i = rij

(
∂Uj
∂rji

· vi
)
. (2.29)

We now have enough ingredients for the force evaluation kernel. Algorithm 7 presents a
pseudo code for this.

Algorithm 7 The force evaluation kernel (one thread for one particle).

Require: b is the block index
Require: t is the thread index
Require: Sb is the block size
Require: i = Sb × b+ t
Require: N is the number of particles
Require: NNi is the number neighbours for particle i
Require: NLik is the index of the kth neighbour of particle i
Require: ri = is the position vector for particle i
Require: vi = is the velocity vector for particle i
Require: F i = is total force on particle i
Require: W i = is per-atom viral for particle i
Require: J i = is the per-atom heat current of the potential part for particle i
Require: Ui, F i, Wi, and J i are defined using registers or shared memory
1: initialize Ui, F i, Wi, and J i to zero
2: if i < N then
3: read in ri to registers from global memory
4: read in vi to registers from global memory
5: for k = 0 to NNi − 1 do
6: j ← NLik
7: Read in rj from global memory and calculate rij
8: apply the minimum image convention to rij
9: calculate Uij,

∂Ui
∂rij

and
∂Uj
∂rji

10: accumulate the potential energy for particle i: Ui ← Ui + 1
2
Uij

11: accumulate the force on particle i: F i ← F i +
(
∂Ui
∂rij
− ∂Uj

∂rji

)
12: accumulate the per-atom virial: Wi ←W i − 1

2
rij ⊗

(
∂Ui
∂rij
− ∂Uj

∂rji

)
13: accumulate the per-atom heat current: J i ← J i + rij

(
∂Uj
∂rji
· vi
)

14: end for
15: save the per-atom quantities Ui, F i, Wi, and J i to global memory
16: end if
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2.5 Integration by one step

The aim of time evolution is to find the phase trajectory

{ri(t1), vi(t1)}Ni=1, {ri(t2), vi(t2)}Ni=1, · · · (2.30)

starting from the initial phase point

{ri(t0), vi(t0)}Ni=1. (2.31)

The time interval between two time points ∆t = t1 − t0 = t2 − t1 = · · · is called the time step.
The algorithm for integrating by one step depends on the ensemble type and other external

conditions. We discuss them in detail below. There are many ensembles used in molecular
dynamics simulations, but we only consider the following 3 in the current version:

• The NV E ensemble, where the particle number N , the system volume V , and the total
energy E are kept constant. It is also called the micro-canonical ensemble.

• The NV T ensemble, where the particle number N , the system volume V , and the tem-
perature T are kept constant. It is also called the canonical ensemble.

• The NPT ensemble, where the particle number N , the pressure (stress) p, and the tem-
perature T are kept constant. There seems to be no simple name for this important
ensemble, but it is usually called the isothermal-isobaric ensemble.

2.5.1 The NVE ensemble and the velocity-Verlet algorithm

In the NV E ensemble, the dynamics of the system is Hamiltonian and the equations of
motion can be derived from Hamilton’s equations. Because these equations of motion have the
time-reversal symmetry, a good numerical integrating method (an integrator) should preserve
this symmetry.

One of the most widely used integrator which has the property of time-reversibility is the
so-called velocity-Verlet method [5]. This integrator is also symplectic. These two properties
make the velocity-Verlet integrator very stable for long-time simulations. Here are the velocity
and position updating equations in the velocity-Verlet method:

vi(tm+1) ≈ vi(tm) +
F i(tm) + F i(tm+1)

2mi

∆t, (2.32)

xi(tm+1) ≈ xi(tm) + vi(tm)∆t+
1

2

F i(tm)

mi

(∆t)2, (2.33)

where mi is the mass of particle i.
The above velocity-Verlet integrator can be derived by finite-difference method (Taylor

series expansion), but a more general method, which can be generalized to more sophisticated
situations, is the classical time-evolution operator approach, or the Liouville operator approach
[15]. In this approach, the time-evolution of a classical system by one step can be formally
expressed as (

ri(t+ ∆t)
pi(t+ ∆t)

)
= eiL∆t

(
ri(t)
pi(t)

)
(2.34)

where pi is the momentum of particle i and eiL∆t is called the classical evolution operator,
which is the classical counterpart of the quantum evolution operator in quantum mechanics.
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The operator iL in the exponent of the evolution operator is called the Liouville operator and
is defined by

iL(anything) = {anything, H} ≡
N∑
i=1

(
∂H

∂pi
· ∂
∂ri
− ∂H

∂ri
· ∂
∂pi

)
(anything). (2.35)

Here, H is the Hamiltonian of the system. Because

∂H

∂pi
=

pi
mi

and − ∂H

∂ri
= F i, (2.36)

we have
iL = iL1 + iL2, (2.37)

iL1 =
N∑
i=1

pi
mi

· ∂
∂ri

, (2.38)

iL2 =
N∑
i=1

F i ·
∂

∂pi
. (2.39)

Here, we have divided the Liouville operator into two parts. In general, iL1 and iL2 do not
commute, and therefore eiL∆t 6= eiL1∆teiL2∆t. However, there is an important theorem called
the Trotter theorem [16], which can be used to derive the following approximation:

eiL∆t ≈ eiL2∆t/2eiL1∆teiL2∆t/2. (2.40)

Now, we can express the one-step integration as(
ri(t+ ∆t)
pi(t+ ∆t)

)
≈ eiL2∆t/2eiL1∆teiL2∆t/2

(
ri(t)
pi(t)

)
. (2.41)

To make further derivations, we note that for an arbitrary constant c and a function f(x),

we have ec
∂
∂xf(x) = f(x + c). Applying this identity to the right most operator in the above

equation, we have (
ri(t+ ∆t)
pi(t+ ∆t)

)
≈ eiL2∆t/2eiL1∆t

(
ri(t)

pi(t) + ∆t
2
F i(t)

)
. (2.42)

Then, applying the operator eiL1∆t, we have(
ri(t+ ∆t)
pi(t+ ∆t)

)
≈ eiL2∆t/2

(
ri(t) + ∆t

pi(t)+
∆t
2
F i(t)

mi

pi(t) + ∆t
2
F i(t)

)
. (2.43)

Last, applying the remaining operator eiL2∆t/2, we have(
ri(t+ ∆t)
pi(t+ ∆t)

)
≈

(
ri(t) + ∆t

pi(t)+
∆t
2
F i(t)

mi

pi(t) + ∆t
2
F i(t) + ∆t

2
F i(t+ ∆t)

)
. (2.44)

It is clear that this equation is equivalent to Eqs. (2.32) and (2.33). The evolution-operator
approach is not only more rigorous, but also more handy. As can be seen from the above
derivations, one only needs to apply the Liouville operators one after another, which can be
easily implemented in a computer language. Because of this, the evolution-operator approach
is also called the “direct-translation” approach.

We can see that in the velocity-Verlet integrator, the position updating can be done in one
step, but the velocity updating can only be done by two steps, one before force updating and
the other after it. Algorithm 8 gives the pseudo code for the complete time-stepping in the
NV E ensemble, including force updating. Algorithms 9 and 10 are the pseudo codes for the
first and second steps of the velocity-Verlet integrator.
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Algorithm 8 The whole time-stepping in the NV E ensemble.

1: apply the first step of the velocity-Verlet algorithm
2: update the forces
3: apply the second step of the velocity-Verlet algorithm

Algorithm 9 The first step of the velocity-Verlet algorithm.

Require: b is the block index
Require: t is th thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: ∆t is the time step
Require: N is the number of particles
Require: mi is the mass of particle i
Require: ri is the position vector of particle i
Require: vi is the velocity vector of particle i
Require: F i is the total force on particle i obtained within the last time step
1: if i < N then
2: update the velocity partially: vi ← vi + 1

2
F i
mi

∆t
3: update the position fully: ri ← ri + vi∆t
4: end if

2.5.2 Berendsen thermostat and barostat

The Berendsen thermostat and barosat are very suitable for equilibrating the system to a
target temperature and pressure.

Using the Berendsen thermostat, the integration algorithm in the NV T ensemble only
requires an extra scaling of all the velocity components, as shown in Algorithm 11. For the
NPT ensemble, the Berendsen barostat requires an extra scaling of positions and box lengths,
as shown in Algorithm 12.

The velocities are scaled in the Berendsen thermostat in the following way:

vscaled
i = vi

√
1 + αT

(
T0

T
− 1

)
. (2.45)

Here, αT is a dimensionless parameter, T0 is the target temperature, and T is the instant
temperature calculated from the current velocities {vi}. The parameter αT should be positive

Algorithm 10 The second step of the velocity-Verlet algorithm.

Require: b is the block index
Require: t is th thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: ∆t is the time step
Require: N is the number of particles
Require: mi is the mass of particle i
Require: vi is the velocity vector of particle i
Require: F i is the total force on particle i obtained within the current time step
1: if i < N then
2: complete the update of the velocity: vi ← vi + 1

2
F i
mi

∆t
3: end if
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Algorithm 11 The whole time-stepping in the NV T ensemble using the Berendsen method.

1: apply the first step of velocity-Verlet algorithm
2: update the forces
3: apply the second step of velocity-Verlet algorithm
4: scale the velocities

Algorithm 12 The whole time-stepping in the NPT ensemble using the Berendsen method.

1: apply the first step of velocity-Verlet algorithm
2: update the forces
3: apply the second step of velocity-Verlet algorithm
4: scale the velocities
5: scale the positions and box lengths

and not larger than 1. When αT = 1, the above formula reduces to the simple velocity-scaling
formula:

vscaled
i = vi

√
T0

T
. (2.46)

A smaller αT represents a weaker coupling between the system and the thermostat. Usually,
any value of αT in the range of 0.001 ∼ 1 can be used. Algorithm 13 is the pseudo code for the
velocity scaling in the Berendsen thermostat.

Algorithm 13 Velocity scaling in the Berendsen thermostat.

Require: b is the block index
Require: t is th thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: N is the number of particles
Require: vi is the velocity vector of particle i
1: if i < N then

2: factor ←
√

1 + αT
(
T0

T
− 1
)

3: vi ← vi× factor
4: end if

In the Berendsen barostat algorithm, the particle positions and box length in a given direc-
tion are scaled if periodic boundary conditions are applied to that direction. The scaling of the
positions reads

rscaled
i = ri [1− αp(p0 − p)] . (2.47)

Here, αp is a parameter and p0 (p) is the target (instant) pressure along the three directions.
The parameter αp is not dimensionless, and it requires some try-and-error to find a good value
of it for a given system. A harder/softer system requires a smaller/larger value of αp. In the
unit system adopted by GPUMD, it is recommended that αp = 10−4 ∼ 10−2. Only directions
with periodic boundary conditions will be affected by the barostat. Algorithm 14 is the pseudo
code for the position and box scaling in the Berendsen barostat.

2.5.3 Nosé-Hoover chain thermostat

The Nosé-Hoover chain method [7–9, 11, 15] is more suitable for calculating equilibrium
properties in a specific ensemble. In the current version of GPUMD, only the Nosé-Hoover
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Algorithm 14 Pseudo code for the position/box scaling in the Berendsen barostat.

Require: b is the block index
Require: t is th thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: N is the number of particles
Require: xi is the x-coordinate of particle i
Require: Li is the box length along the x-direction
1: if i < N then
2: if use periodic boundary conditions along the x direction then
3: factor ← 1− αp(p0x − px)
4: scale the positions along the x-direction: xi ← xi× factor
5: scale the box length along the x-direction: Lx ← Lx× factor
6: end if
7: Do the same for the other directions
8: end if

chain thermostat is implemented. We hope to implement the Nosé-Hoover chain barostat in a
future version.

We start with the well-known Nosé-Hoover equations of motion [7–9]:

d

dt
ri =

pi
mi

, (2.48)

d

dt
pi = F i −

π

Q
pi, (2.49)

d

dt
η =

π

Q
, (2.50)

d

dt
π = 2

(∑
i

p2
i

2mi

− dN kBT

2

)
, (2.51)

where d is the dimension of the space (which is 3 in most applications), ri, pi, F i, and mi

are the position, momentum, force, and mass of particle i, and η, π, and Q are the “position”,
“momentum”, and “mass” of the thermostat. Actually, η is dimensionless, π has the dimension
of [energy] × [time] and Q has the dimension of [energy] × [time]2.

The Nosé-Hoover Hamiltonian can generate canonical ensemble in some cases, but it can fail
when more than one conservation law is obeyed by the system. The major reason for this failure
is that the degree of freedom of the thermostat itself does not follow the canonical distribution.
To overcome this difficulty, Martyna et al. [9] proposed the Nosé-Hoover chain method, where a
chain of M thermostats are introduced and the temperature of the mth thermostat is controlled
by the (m+1)th thermostat. The temperature of the system is controlled by the 1st thermostat.
When M = 1, the Nosé-Hoover chain method reduces to the Nosé-Hoover method.

The equations of motion in the Nosé-Hoover chain method are

d

dt
ri =

pi
mi

, (2.52)

d

dt
pi = F i −

π0

Q0

pi, (2.53)

d

dt
ηk =

πk
Qk

(k = 0, 1, · · · ,M − 1), (2.54)
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d

dt
π0 = 2

(∑
i

p2
i

2mi

− dN kBT

2

)
− π1

Q1

π0, (2.55)

d

dt
πk = 2

(
π2
k−1

2Qk−1

− kBT

2

)
− πk+1

Qk+1

πk (k = 1, 2, · · · ,M − 2), (2.56)

d

dt
πM−1 = 2

(
π2
M−2

2QM−2

− kBT

2

)
. (2.57)

The optimal choice [9] for the thermostat masses is

Q0 = dNkBTτ
2, (2.58)

Qk = kBTτ
2 (k = 1, 2, · · · ,M − 1), (2.59)

where τ is a time parameter, whose value is usually chosen by try and error in practice. A good
choice is τ = 100∆t, where ∆t is the time step for integration.

An integration scheme for NV T ensemble using the Nosé-Hoover chain can also be formu-
lated using the approach of the time-evolution operator [11, 15]. The total Liouville operator
for the equations of motion in the Nosé-Hoover chain method is [11, 15]

iL = iL1 + iL2 + iLT , (2.60)

iL1 =
N∑
i=1

pi
mi

· ∂
∂ri

, (2.61)

iL2 =
N∑
i=1

F i ·
∂

∂pi
. (2.62)

iLT =
M−1∑
k=0

πk
Qk

∂

∂ηk
+

M−2∑
k=0

(
Gk −

πk+1

Qk+1

πk

)
∂

∂πk
+GM−1

∂

∂πM−1

−
N−1∑
i=0

π0

Q0

pi ·
∂

∂pi
. (2.63)

That is, the Liouville operator for the NV T ensemble contains an extra term iLT related to
the thermostats, which is absent from that for the NV E ensemble.

The total time-evolution operator eiL∆t for one step can be factorized using the Trotter
theorem as in the case of the NV E ensemble:

eiL ≈ eiLT∆t/2eiL2∆t/2eiL1∆teiL2∆t/2eiLT∆t/2. (2.64)

Comparing this with the factorization in the NV E ensemble, we see that we only need to apply
the operator eiLT∆t/2 before and after applying the usual velocity-Verlet integrator in the NV E
ensemble.

The operator eiLT∆t/2 can be further factorized into some elementary factors using the
Trotter theorem. First, we define the following decomposition of the operator iLT :

iLT = iLT1 + iLT2 + iLT3, (2.65)

iLT1 =
M−1∑
k=0

πk
Qk

∂

∂ηk
, (2.66)

iLT2 =
M−2∑
k=0

(
Gk −

πk+1

Qk+1

πk

)
∂

∂πk
+GM−1

∂

∂πM−1

, (2.67)
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iLT3 =
N−1∑
i=0

π0

Q0

pi ·
∂

∂pi
. (2.68)

We can then make the following factorization:

eiLT∆t/2 ≈ eiLT2∆t/4eiLT3∆t/2eiLT1∆t/2eiLT2∆t/4. (2.69)

There are still a few terms in iLT2 and we need to factorize eiLT2∆t/4 further. We can factorize
the eiLT2∆t/4 term on the right of the above equation as

eiLT2∆t/4 ≈
M−2∏
k=0

(
e
−∆t

8

πk+1
Qk+1

πk
∂
∂πk e

∆t
4
Gk

∂
∂πk e

−∆t
8

πk+1
Qk+1

πk
∂
∂πk

)
e

∆t
4
GM−1

∂
∂πM−1 (2.70)

and correspondingly factorize that on the left as

eiLT2∆t/4 ≈ e
∆t
4
GM−1

∂
∂πM−1

0∏
k=M−2

(
e
−∆t

8

πk+1
Qk+1

πk
∂
∂πk e

∆t
4
Gk

∂
∂πk e

−∆t
8

πk+1
Qk+1

πk
∂
∂πk

)
. (2.71)

We are now prepared to set up the algorithms for the integrator in the NV T ensemble using
the Nosé-Hoover chain method. This can be easily done by the “direct-translation” procedure.
Before writing down the algorithms, we discuss a technical point. It can be shown that the
effect of the operator ecx

∂
∂x on x is to scale it by a factor of ec:

ecx
∂
∂xx = ecx. (2.72)

Therefore, the effect of the operator eiLT3∆t/2 is to scale the momenta of all the particles in the
system by a uniform factor e−(π0/Q0)∆t/2. Although this operator appears in the factorization of
eiLT∆t/2, its does not affect the thermostats. So, when applying the operator eiLT∆t/2, we only
need to update the variables related to the thermostats and save this factor for later use when
we update the variables for the particles. In this way, the update for the thermostats and that
for the particles are separated.

Algorithm 15 presents the pseudo code for the whole time-stepping in the NV T ensemble
using the Nosé-Hoover chain method. In this algorithm, the only lines 1 and 7 do the same
thing: update the thermostat variables. This is a very cheap calculation and we only implement
it on the CPU. Its implementation is straightforward using the “direct-translation” technique.

Algorithm 15 The whole time-stepping in the NV T ensemble using the Nosé-Hoover chain
method.

1: apply the operator eiLT∆t/2 except for eiLT3∆t/2 within it and save the value of e−(π0/Q0)∆t/2

2: scale the velocity components of all the particles by the factor e−(π0/Q0)∆t/2

3: apply the first step of velocity-Verlet algorithm corresponding to the operator eiL1∆teiL2∆t/2

4: update the forces
5: apply the second step of velocity-Verlet algorithm corresponding to the operator eiL2∆t/2

6: apply the operator eiLT∆t/2 except for eiLT3∆t/2 within it and save the value of e−(π0/Q0)∆t/2

7: scale the velocity components of all the particles by the factor e−(π0/Q0)∆t/2

2.6 Postprocess

2.6.1 Heat current autocorrelation and lattice thermal conductivity

In MD simulations, a popular approach of computing the lattice thermal conductivity is to
use the Green-Kubo formula [17,18]. In this method, the running lattice thermal conductivity
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along the x-direction (similar expressions apply to other directions) can be expressed as an
integral of the heat current autocorrelation (HAC):

κxx(t) =
1

kBT 2V

∫ t

0

dt′HACxx(t
′). (2.73)

Here, kB is Boltzmann’s constant, V is the volume of the simulated system, T is the absolute
temperature, and t is the correlation time. The HAC is

HACxx(t) = 〈Jx(0)Jx(t)〉, (2.74)

where Jx(0) and Jx(t) are the total heat current of the system at two time points separated by
an interval of t. The symbol 〈〉 means that the quantity inside will be averaged over different
time origins.

The calculation of the heat current J has been discussed earlier. Here, we assume that we
have calculated the total heat current of the system at M number of time points and saved
them into the global memory. The time interval ∆τ between the time points here needs not
to be the same as the time step ∆t used in the time-stepping. Usually, ∆τ = 10∆t is a good
choice. From the M heat current data, we can calculate at most M HAC data HACxx(t), with
t = 0,∆τ, 2∆τ, · · · , (M − 1)∆τ . However, a correlation function becomes more and more noisy
as the correlation time increases and in practical applications, one has to make sure that the
production time (M ×∆τ) is much larger than the maximum correlation time tmax one needs.
The number of HAC data Nc is related to the maximum correlation time by tmax = (Nc−1)∆τ .
In most cases, Nc = M/10 is a good choice. It is also convenient to use the same number of time
origins, M − Nc, to do the time-average for each correlation time. With these considerations,
we arrive at the following explicit expression for the HAC:

HACxx(nc∆τ) =
1

M −Nc

M−Nc−1∑
m=0

Jx(m∆τ)Jx((m+ nc)∆τ), (2.75)

where nc = 0, 1, 2, · · · , Nc − 1.
Because the HAC at different correlation times can be calculated independently, we can

simply use one CUDA-block for one point of the HAC data. Algorithm 16 presents the pseudo
code for the calculation of HACxx(t) from the heat current data saved in the global memory.

2.6.2 Velocity autocorrelation and related quantities

Velocity autocorrelation (VAC) is an important quantity in MD simulations. On the one
hand, its integral with respect to the correlation time gives the running diffusion constant,
which is equivalent to that obtained by a time-derivative of the mean square displacement
(MSD). On the other hand, its Fourier transform is the phonon density of states (PDOS; also
called vibrational density of states) [19].

The VAC is a single-particle correlation function. This means that we can define the VAC
for individual particles. For particle i, the VAC along the x direction is defined as

〈vxi(0)vxi(t)〉. (2.76)

Then, one can define the mean VAC for any number of particles. In the current version of
GPUMD, it is assumed that one wants to calculate the mean VAC in the whole simulated
system:

VACxx(t) =
1

N

N∑
i=1

〈vxi(0)vxi(t)〉. (2.77)
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Algorithm 16 Calculation of HACxx(t) from the heat current.

Require: i is the block index
Require: j is the thread index
Require: Sb is the block size
Require: M is the number of heat current data in each direction
Require: Nc is the number of HAC data in each direction to be calculated
Require: Jx is the heat current in the x-direction and is in the global memory
Require: HACxx[i][j] is the HAC in the x-direction and is defined in the shared memory. Note

that the index i corresponds to the block index and the index j corresponds to the thread
index.

1: initialize before accumulation: HACxx[i][j]← 0
2: for n = 0 to d(M −Nc)/Sbe − 1 do
3: if j + nSb < M −Nc then
4: HACxx[i][j]← HACxx[i][j] + Jx[j + nSb]Jx[j + nSb + i]
5: end if
6: end for
7: synchronize the threads within each block
8: use binary reduction to do the summation in Eq. (2.75): HACxx[i][0]←

∑
j HACxx[i][j]

9: save HACxx[i][0]/(M −Nc) to the global memory

The order between the time-average (denoted by 〈〉) and the space-average (the average over
the particles) can be changed:

VACxx(t) =

〈
1

N

N∑
i=1

vxi(0)vxi(t)

〉
. (2.78)

Using the same conventions as in the case of HAC calculations, we have the following explicit
expression for the VAC:

VACxx(nc∆τ) =
1

(M −Nc)N

M−Nc−1∑
m=0

N∑
i=1

vxi(m∆τ)vxi((m+ nc)∆τ), (2.79)

where nc = 0, 1, 2, · · · , Nc − 1. The algorithm for calculating the VAC is quite similar to that
for calculating the HAC and it thus omitted.

After obtaining the VAC, we can calculate the running diffusion constant Dxx(t) by

Dxx(t) =

∫ t

0

dt′ VACxx(t
′). (2.80)

One can prove that this is equivalent to the time-derivative of the MSD, i.e., the Einstein
formula:

Dxx(t) =
1

2

d

dt
∆x2(t), (2.81)

where the MSD ∆x2(t) is defined as

∆x2(t) =

〈
1

N

N∑
i=1

[xi(t)− xi(0)]2
〉

=
1

N

N∑
i=1

〈
[xi(t)− xi(0)]2

〉
. (2.82)

Here is the proof. Starting from the relation between position and velocity,

xi(t)− xi(0) =

∫ t

0

dt′vxi(t
′), (2.83)
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we have

[xi(t)− xi(0)]2 =

∫ t

0

dt′vxi(t
′)

∫ t

0

dt′′vxi(t
′′) =

∫ t

0

dt′
∫ t

0

dt′′vxi(t
′)vxi(t

′′). (2.84)

Then, the MSD can be expressed as

∆x2(t) =
1

N

N∑
i=1

∫ t

0

dt′
∫ t

0

dt′′ 〈vxi(t′)vxi(t′′)〉 . (2.85)

Using Lebniz’s rule, we have

Dxx(t) =
1

2

d

dt
∆x2(t) =

1

N

N∑
i=1

∫ t

0

dt′ 〈vxi(t)vxi(t′)〉 , (2.86)

which can be rewritten as

Dxx(t) =
1

N

N∑
i=1

∫ t

0

dt′ 〈vxi(0)vxi(t
′ − t)〉 . (2.87)

Letting τ = t′ − t, we get (note that here t is considered as a constant)

Dxx(t) =
1

N

N∑
i=1

∫ 0

−t
dτ 〈vxi(0)vxi(τ)〉 , (2.88)

which can rewritten as

Dxx(t) =
1

N

N∑
i=1

∫ 0

−t
dτ 〈vxi(−τ)vxi(0)〉 . (2.89)

Letting t′ = −τ , we finally get

Dxx(t) =
1

N

N∑
i=1

∫ t

0

dt′ 〈vxi(t′)vxi(0)〉 =

∫ t

0

dt′ VACxx(t). (2.90)

We thus have derived the Green-Kubo formula from the Einstein formula.
In summary,

• The derivative of the the MSD gives the running diffusion coefficient.

• The integral of the the VAC gives the running diffusion coefficient.

• One can obtain the MSD by integrating the VAC twice (numerically).

It is interesting that the same VAC can be used to compute the PDOS, as first demonstrated
by Dickey and Paskin [19]. The PDOS is simply the Fourier transform of the normalized VAC:

ρx(ω) =

∫ ∞
−∞

dteiωt VACxx(t). (2.91)

Here, VACxx(t) should be understood at the normalized function VACxx(t)/VACxx(0). Al-
though it looks simple, it does not mean that you can get the correct PDOS by a naive fast
Fourier transform (FFT) routine. Actually, this computation is very cheap and we do not need
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FFT at all. What we need is a discrete cosine transform. To see this, we first note that, by
definition, VACxx(−t) = VACxx(t). Using this, we have

ρx(ω) =

∫ ∞
−∞

dt cos(ωt) VACxx(t). (2.92)

Because we only have the VAC data at the Nc discrete time points, the above integral is
approximated by the following discrete cosine transform:

ρx(ω) ≈
Nc−1∑
nc=0

(2− δnc0)∆τ cos(ωnc∆τ) VACxx(nc∆τ). (2.93)

Here, δnc0 is the Kronecker δ function and the factor (2− δnc0) accounts for the fact that there
is only one point for t = 0 and there are two equivalent points for t 6= 0. Last, we note that a
window function is needed to suppress the unwanted Gibbs oscillation in the calculated PDOS.
In GPUMD, the Hann window H(nc) is applied:

ρx(ω) ≈
Nc−1∑
nc=0

(2− δnc0)∆τ cos(ωnc∆τ) VACxx(nc∆τ)H(nc), (2.94)

H(nc) =
1

2

[
cos

(
πnc
Nc

)
+ 1

]
. (2.95)

Here are some comments on the normalization of the PDOS. In the literature, one usually
uses an arbitrary unit for the PDOS, but it actually has a dimension of [time], and an appro-
priate unit for it can be 1/THz or ps. The normalization of ρx(ω) can be determined by the
inverse Fourier transform:

VACxx(t) =

∫ ∞
−∞

dω

2π
e−iωtρx(ω). (2.96)

As we have normalized the VAC, we have

1 = VACxx(0) =

∫ ∞
−∞

dω

2π
ρx(ω). (2.97)

Because ρx(−ω) = ρx(ω), we have ∫ ∞
0

dω

2π
ρx(ω) =

1

2
. (2.98)

The calculated PDOS should meet this normalization condition (approximately).
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Chapter 3

How to use GPUMD

3.1 Compile GPUMD

Go to the src directory and type make (or make -j8 to make it faster). You may want to
first do make clean. The default option is to use GPU. It can be modified to use CPU only.

I should make the makefile more user-friendly. Mikko, I need your help!

3.2 Run simulations with GPUMD

To run a simulation or a set of simulations with GPUMD, you need to first prepare a few
input files.

3.2.1 The xyz.in input file

A file named xyz.in should be prepared and should have the following format (empty lines
and comments are not allowed):

N M cutoff

pbc_x pbc_y pbc_z L_x L_y L_z

type_1 group_1 mass_1 x_1 y_1 z_1

type_2 group_2 mass_2 x_2 y_2 z_2

...

type_N group_N mass_N x_N y_N z_N

In the first line, N is the number of atoms, M is the maximum possible number of neighbour
atoms for one atom, and cutoff is the cutoff distance used for building the neighbour list. In
the second line, pbc_x, pbc_y, and pbc_z can only be 1 or 0. If pbc_x is 1, it means that
periodic boundary conditions will be applied to the x direction; if pbc_x is 0, it means that
free boundary conditions will be applied to the x direction. Similar descriptions apply to the
other two directions. The next three items in the second line, L_x, L_y, and L_z, are the initial
lengths of the (rectangular) simulation box along the x, y, and z directions, respectively. In
the third line, type_1, group_1, and mass_1 are respectively the type, group label, and mass
of the first atom. The next three items, x_1, y_1, and z_1, are the coordinates of this atom.
Similarly, the (m + 2)th line gives the information for the mth atom. This file should have
N + 2 lines.

In the current version, types and group labels are not used, and they can be set to 0. We
will make use of these input data in a future version.

The mass should be given in unit of the unified atomic mass unit (amu). The cutoff distance,
box lengths and atom coordinates should be given in unit of angstrom (Å).

23
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3.2.2 The run.in input file

Then, a file named run.in should also be prepared. In this input file, blank lines and lines
starting with # are ignored. All the other lines should be of the following form:

keyword parameter_1 parameter_2 ...

The overall structure of a run.in file is as follows:

-------------------------------------------------------------------

# First, write these two keywords in any order

potential

velocity

# Then, write (all or part of) these keywords in any order

ensemble

time_step

dump_thermo

dump_position

dump_velocity

dump_force

compute_vac

compute_hac

# Then the keyword run

run

# Now you can repeat the last two groups as many times as you want

-------------------------------------------------------------------

We now describe the use of the keywords in detail.

1. The potential keyword.

This keyword only has one parameter, which is the file name (including the absolute or
relative path) containing the information of the potential that the user wants to use. For
example, the command

potential potentials/graphene.tersoff

means that you will use the potential model defined in the file graphene.tersoff which
should be in the potentials folder. We will talk more about the potential files in the
next subsection.

2. The velocity keyword.

This keyword only has one parameter, which is the initial temperature of the system. For
example, the command

velocity 10.0

means that you want to set the initial temperature to 10 K.
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3. The ensemble keyword.

This keyword specifies the statistical ensemble and the relevant parameters. The number
of parameters depends on the first parameter, which is the ensemble type. There are
currently 3 ensemble types: NV E, NV T , and NPT . If the ensemble type is NV E, there
is no need to further specify any other parameters. Therefore, the command to specify
the NV E ensemble is:

ensemble nve

If the ensemble type is NV T , you need to specify a target temperature and a parameter
which reflects the strength of the coupling between the system and the thermostat. There
are two NV T methods, the Berendsen method (nvt_ber) and the Nosé-Hoover chain
method (nvt_nhc). The complete command can be

ensemble nvt_ber T T_coup

or

ensemble nvt_nhc T T_coup

Here, T is the target temperature and T_coup is the coupling constant in each method.
If the ensemble type is NPT , you need to specify a target temperature, a temperature
coupling constant, 3 target pressures (along the 3 directions), and a pressure coupling
constant. There is currently only one NPT method, which is the Berendsen method.
The complete command is

ensemble nvt_ber T T_coup Px Py Pz P_coup

Here, T is the target temperature, T_coup is the temperature coupling constant in the
Berendsen method, Px, Py, and Pz are the target pressure (stress) along the 3 directions,
and P_coup is the pressure coupling constant in the Berendsen method. The units of
temperature and pressure for this keyword are K and GPa (109 Pa), respectively. The
temperature coupling constant in the Berendsen method can be any positive number
less than or equal to 1 and we recommend a value in the range of [0.001, 1]. A larger
number results in a faster control of the temperature. The temperature coupling constant
in the Nosé-Hoover chain method is in unit of the time step and is recommended to be
in the range of [10, 1000]. Here, a larger number results in a slower control of the
temperature. The pressure coupling constant in the Berenden method should be a small
positive number in the unit system adopted by GPUMD. We recommend a value in the
range of [0.01, 0.0001]. For a stiffer material (like diamond or graphene), one should use
a smaller value. In practice, all these parameters should be determined by try and error.

4. The time_step keyword.

This keyword only requires a single parameter, which is the time step for integration in
unit of fs (10−15 s). For example, the command

time_step 1.0

means that the time step for the current run is 1 fs. Note that the value of time step does
not need to be set for each run in a “run.in” file. If you do not set a new value of time
step in a run, the value in the previous run will be used.
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5. The dump_thermo, dump_position, dump_velocity, and dump_force keywords.

These keywords only requires a single parameter, which is the output frequency for the
relevant quantities: common thermodynamic quantities for dump_thermo, positions for
dump_position, velocities for dump_velocity, and forces for dump_force. For example,
the command

dump_thermo 1000

means that the thermodynamic quantities will be written into a file named thermo.out

(in the folder which contains your run.in file) every 1000 steps. By default, GPUMD
does not dump these quantities. For example, if there is no dump_position command in
the run.in file, positions will not be output.

6. The compute_vac keyword.

This keyword is related to the calculations of VAC (velocity autocorrelation) and two
other related quantities: RDC (running diffusion constant) and DOS (phonon density of
states). If this keyword appears in your input file, it means that you want to calculate
the VAC in a run; otherwise, it means that you don’t want to calculate the VAC. The
first parameter for this keyword is the sample interval of the velocity data. The second
parameter is the maximum number of correlation steps. The third parameter is the
maximum angular frequency ωmax = 2πνmax used in the DOS calculation. For example,
the command

compute_vac 5 200 350

means that (1) you want to calculate the VAC and related quantities; (2) the velocity
data will be recorded every 5 steps; (3) the maximum correlation time is (200−1)×(5∆t),
where ∆t is the time step; (4) the maximum angular frequency you want to consider is
ωmax = 2πνmax = 350 THz. The results will be written to a file named vac.out in the
same folder where you put your run.in file in.

7. The compute_hac keyword.

The compute_hac keyword is similar to the compute_vac keyword. It is used to calculate
HAC (heat current autocorrelation) and RTC (running thermal conductivity). It has 3
parameters. The first parameter is the sample interval for the heat current data. The
second parameter is the maximum correlation steps. These two parameters are similar to
those for the compute_vac keyword. The third parameter for compute_hac is the output
interval of the HAC and RTC data. For example, the command

compute_hac 10 100000 10

means that (1) you want to calculate the thermal conductivity using the Green-Kubo
method; (2) the heat current data will be recorded every 10 steps; (3) the maximum
correlation time is (100000− 1)× (10∆t), where ∆t is the time step; (4) the HAC/RTC
data will be averaged for every 10 data and the number of HAC/RTC data in a given
direction is then 100000/10 = 10000. The results will be written to a file named hac.out

in the same folder where you put your run.in file in.
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8. The run keyword.

This keyword only requires a single parameter, which is the number of steps for the current
run. The time-evolution will only start when a run keyword has been reached. Before
reaching this keyword, the code just collect the parameters for the current run. In the
case where the VAC or the HAC is calculated, the number of steps should be larger than
the product of the sampling interval and the number of correlation data. For example,
the parameters in the commands

compute_hac 10 100000 10

run 10000000

are reasonably good because the number of steps (107) is ten times as large as the product
of the sampling interval and the number of correlation data (10× 105 = 106). In the case
of calculating the VAC, it is important to first estimate the amount of memory to be used.
Denote the number of steps as Nrun and the sampling interval as Nsamp, the memory to
be used for holding the velocity data is (Nrun/Nsamp) × N × 3 × 8 byte if using double-
precision. If the number of atoms is N = 104, Nsamp = 5, and Nrun = 105, the memory to
be used for holding the velocity data is 4.8 GB. This is ok for Tesla K40 and K80, but may
be too much for older GPUs. The current version of GPUMD is thus not quite suitable to
study problems with very large velocity-velocity correlation times. In this case, you can
save the velocities into disk (using the dump_velocity keyword) and analyse the data by
yourself.

3.2.3 Prepare a potential file

The potential keyword used in the run.in file is used to specify the file which contains
the potential model and parameters to be used in a simulation.

We require the following format in a potential file:

potential_name

number

parameter_1 parameter_2 ...

Here, potential_name is the name of the potential model, which can only be tersoff or sw

in the current version. In the second line, number should be 1 in the current version. It means
that only one atom type is considered. The next line contains the values of the parameters
used in the potential model in a given order. Referring to the Ref. [1], the parameters for the
Tersoff potential should be given in the following order (units are given in the parentheses):

A(eV) B(eV) λ(Å−1) µ(Å−1) β n c d h R(Å) S(Å) (3.1)

Referring to Ref. [2], the parameters for the Stillinger-Weber potential should be given in the
following order (units are given in the parentheses):

ε(eV) λ A B a γ σ(Å) cos(θt) (3.2)

We have already prepared 3 potential files in the potentials folder: graphene.tersoff,
silicon.tersoff, and silicon.sw.

We are still working on extending the code to consider more than one atom types.
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3.2.4 Prepare a “driver input file”

In the above, we have described how to prepare the individual input files. GPUMD requires
you put the xyz.in file and the run.in file into the same folder. Then, you just need an extra
input file, which we call a “driver input file”, to specify the path(s) of the folder(s) containing
the input files. This “driver input file” should have the following format:

number_of_simulations

path_1

path_2

...

Let us consider two explicit examples. Consider a “driver input file” which has the following
content:

1

examples/lattice_constant/si_tersoff

This tells the code that there will be one simulation and the input files are prepared in the
folder examples/lattice_constant/si_tersoff. You can also run multiple simulations in a
single round by specifying more input folders in the “driver input file”. An example is:

2

examples/lattice_constant/si_tersoff

examples/lattice_constant/si_sw

In this case, it means that you want to run 2 simulations consecutively.
Output files will be created in the folders containing the corresponding input files. Note

that results will be appended to existing files rather than erasing existing data.

3.2.5 Run the code

Now you are ready to run the code. Suppose that the “driver input file” is named as input
and is in the folder where you can see the src folder, you can run the code using the following
command:

src/gpumd < input

3.3 Data formats in the output files

To analyse the results obtained by using GPUMD, you have to know how the output data
are organized. We note that for all the output files, results from a new simulation will be
appended, rather than erasing existing data. Therefore, if you do not intend to append new
results to existing output files, you’d better first delete the existing output files or make a copy
of them.

3.3.1 The thermo.out file

There are 9 columns in the thermo.out file, each containing the values of a quantity at
increasing time points. The quantities are as follows:

• column 1: temperature (in unit of K)
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• column 2: total energy (in unit of eV) of the system if the thermostat method is Nosé-
Hoover chain and kinetic energy (in unit of eV) of the system otherwise

• column 3: total energy (in unit of eV) of the thermostat if the thermostat method is
Nosé-Hoover chain and potential energy (in unit of eV) of the system otherwise

• column 4: pressure (in unit of GPa) along the x direction

• column 5: pressure (in unit of GPa) along the y direction

• column 6: pressure (in unit of GPa) along the z direction

• column 7: box length (in unit of Å) along the x direction

• column 8: box length (in unit of Å) along the y direction

• column 9: box length (in unit of Å) along the z direction

3.3.2 The xyz.out file

There are 3 columns in the xyz.out file, corresponding to the x, y, and z coordinates of the
system at increasing time points. For example, if there are 4 atoms (labelled from 0 to 3) and
you have saved 2 frames (corresponding to t0 and t1) of the configuration into the xyz.out file,
the data in xyz.out will be arranged in the following way:

x_0(t_0) y_0(t_0) z_0(t_0)

x_1(t_0) y_1(t_0) z_1(t_0)

x_2(t_0) y_2(t_0) z_2(t_0)

x_3(t_0) y_3(t_0) z_3(t_0)

x_0(t_1) y_0(t_1) z_0(t_1)

x_1(t_1) y_1(t_1) z_1(t_1)

x_2(t_1) y_2(t_1) z_2(t_1)

x_3(t_1) y_3(t_1) z_3(t_1)

The box lengths at different time points can be found from the thermo.out file, but you have
to make sure that you have required to dump data to that file with an appropriate sampling
interval.

3.3.3 The v.out file

Similar to the xyz.out file, but for the velocities.

3.3.4 The f.out file

Similar to the xyz.out file, but for the forces.

3.3.5 The vac.out file

This file contains the data of VAC (velocity autocorrelation) and related quantities, namely,
the RDC (running diffusion coefficient) and the DOS (phonon density of states). The data in
this file are organized as follows:

• column 1: correlation time (in unit of ps)
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• column 2: VAC (in unit of Å2/ps2) along the x direction

• column 3: VAC (in unit of Å2/ps2) along the y direction

• column 4: VAC (in unit of Å2/ps2) along the z direction

• column 5: RDC (in unit of Å2/ps) along the x direction

• column 6: RDC (in unit of Å2/ps) along the y direction

• column 7: RDC (in unit of Å2/ps) along the z direction

• column 8: angular frequency ω in unit of THz

• column 9: DOS (in unit of 1/THz) along the x direction

• column 10: DOS (in unit of 1/THz) along the y direction

• column 11: DOS (in unit of 1/THz) along the z direction

3.3.6 The hac.out file

This file contains the data of HAC (heat current autocorrelation) and RTC (running thermal
conductivity), organized in the following way:

• column 1: correlation time (in unit of ps)

• column 2: HAC (in unit of eV3/amu) along the x direction

• column 3: HAC (in unit of eV3/amu) along the y direction

• column 4: HAC (in unit of eV3/amu) along the z direction

• column 5: RTC (in unit of Wm−1K−1) along the x direction

• column 6: RTC (in unit of Wm−1K−1) along the y direction

• column 7: RTC (in unit of Wm−1K−1) along the z direction
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Examples

In this chapter, we give some examples to illustrate the usage of GPUMD. All the results
presented here are obtained by using the double-precision version of the GPU code.

4.1 Lattice constant of silicon

A given crystal should have a well defined average lattice constant at a given pressure and
temperature. Here we use silicon as an example to show how to calculate lattice constants
using GPUMD. We use a cubic system (of diamond structure) consisting of 8×8×8×8 = 4096
silicon atoms and compare the results obtained with two different potential models, namely,
the Tersoff potential and the Stillinger-Weber potential.

The “run.in” input file in the case of the Tersoff potential is given below. The first line of
command tells that the potential to be used is specified in the file potentials/si.tersoff.
In the case of the Stillinger-Weber potential, this file should be changed to potentials/si.sw.
The second line of the command tells that the velocities will be initialized with a temperature
of 200 K. Then, the next 4 lines tell how to do the first run. This run will be in the NPT
ensemble, using the Berendsen method. The temperature is 200 K and the pressures are zero
along all the directions. The coupling constants are 0.01 and 0.0005 for the thermostat and the
barostat, respectively. The time step for integration is 1 fs. There are 100 000 steps for this
run and the thermodynamic quantities will be output every 100 steps. After this run, there are
6 other runs with the same parameters but the temperature. The temperature increases from
200 K to 1 400 K from the first to the last run.

-------------------------------------------------------------------

potential potentials/si.tersoff # use the Tersoff potential

velocity 200.0

ensemble npt_ber 200.0 0.01 0.0 0.0 0.0 0.0005

time_step 1.0

dump_thermo 100

run 100000

ensemble npt_ber 400.0 0.01 0.0 0.0 0.0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 600.0 0.01 0.0 0.0 0.0 0.0005

dump_thermo 100

31
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run 100000

ensemble npt_ber 800.0 0.01 0.0 0.0 0.0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 1000.0 0.01 0.0 0.0 0.0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 1200.0 0.01 0.0 0.0 0.0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 1400.0 0.01 0.0 0.0 0.0 0.0005

dump_thermo 100

run 100000

-------------------------------------------------------------------
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Figure 4.1: (Left) Instant lattice constant of silicon (of the diamond crystal structure) as a
function of simulations time. (Right) Average lattice constant (over the last 50 ps in each run
for a given temperature) as a function of temperature.

The two simulations take a few minutes in total using a Tesla K40 card. In the output
file thermo.out, we can get the data for the box lengths (columns 7-9), which can be used to
calculate the lattice constant. Because the system is isotropic, the results in different directions
are averaged. We have 7 runs, each with 100 ps, and we use the data within the last 50 ps in
each run to calculate the average lattice constant at each temperature. The results are shown in
Fig. 4.1. The lattice constants obtained by the Tersoff potential are larger than those obtained
by the Stillinger-Weber potential, in agreement with the results obtained by Howell [20] using
LAMMPS.

4.2 Phonon density of states of graphene

In this example, we calculate the phonon density of states of graphene at 300 K and zero
pressure. The simulated cell size is about 15 nm × 15 nm (8 640 atoms). The “run.in” file
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Figure 4.2: Velocity autocorrelation function (left) and phonon density of states (right) for
graphene at 300 K and zero pressure. Note that the results are decomposed into an in-plane
part and an out-of-plane part, which is special for two-dimensional materials.

reads:

-------------------------------------------------------------------

potential potentials/graphene.tersoff

velocity 300.0

ensemble npt_ber 300 0.01 0.0 0.0 0.0 0.0005

time_step 1.0

dump_thermo 100

run 200000

ensemble nve

compute_vac 5 200 400.0

run 100000

-------------------------------------------------------------------

The first two lines specify the potential file potentials/graphene.tersoff and the initial
temperature, T = 300 K. The following 4 non-empty lines constitute the equilibration stage,
where the NPT ensemble is used. This run lasts 200 ps. The last 3 non-empty lines correspond
to the production stage, where the NV E ensemble is used. The line with compute_vac means
that velocities will be recorded every 5 steps (5 fs) and 200 VAC data (the maximum correlation
time is then about 1 ps) will be calculated. The last parameter in this line is the maximum
angular frequency considered, ωmax = 2πνmax = 400 THz, which is large enough for graphene.
This production run lasts 100 ps.

Figure 4.2 shows the calculated VAC and PDOS. For three-dimensional systems, the results
along different directions are usually averaged, but for two-dimensional materials like graphene,
it is natural to consider the in-plane part (corresponds to the x and y directions in the simu-
lation) and the out-of-plane part (corresponds to the z direction in the simulation) separately.
It can be seen that the two components behave very differently.
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4.3 Thermal conductivity of graphene

In this example, we use the Green-Kubo method to calculate the lattice thermal conductivity
of graphene at 300 K and zero pressure. The “run.in” file for this simulation reads:

-------------------------------------------------------------------

potential potentials/graphene.tersoff

velocity 10.0

ensemble npt_ber 300.0 0.01 0.0 0.0 0.0 0.0001

time_step 1.0

dump_thermo 100

run 1000000

ensemble nve

compute_hac 10 100000 10

run 10000000

-------------------------------------------------------------------

Most of the commands have been explained in previous examples. The only new command
is the line with compute_hac. The first number (10) in this line means that the heat current
data will be recorded every 10 steps (10 fs). The second number (100000) means that 100 000
HAC data will be calculated along each direction so that the maximum correlation time will
be about 1 ns. The last number (10) means that the HAC and RTC data will be averaged
for every 10 data points such that the time interval for the output data will be 0.1 ps. The
equilibration (using the NPT ensemble) stage lasts 1 ns (106 steps) and the production (using
the NV E ensemble) stages last 10 ns (107 steps).

Calculating thermal conductivity of graphene can be very time consuming. By running the
above simulations tens of times, you may be able to obtain comparable results as presented in
Fig. 4(e) in Ref. [3]. We do not present and discuss the results here. An interested reader is
encouraged to do the simulations and compare his/her results with those in Ref. [3].
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Publications that are related to
GPUMD

GPUMD has found a few successful applications. Here, we collect the relevant publications:

1. Ref. [21]

This paper provides some proof-of-concept thermal conductivity calculations on the GPU.

2. Ref. [3]

In this paper, a set of new formulas for force, virial stress, and heat current were derived
in detail. These new formulas are crucial for the implementation of GPUMD. This paper
also provides systematic applications of GPUMD to the calculation of thermal conduc-
tivities of covalently bonded materials, from three-dimensional silicon and diamond to
two-dimensional graphene and quasi-one-dimensional carbon nanotube.

3. Ref. [4]

This manuscript discusses some details of the implementation of GPUMD and its perfor-
mance.

4. Ref. [22]

In this paper, GPUMD was used to relax large-scale polycrystalline samples and evaluate
the grain boundary energies in the samples.

5. Ref. [23]

In this paper, GPUMD was used to predict the lattice thermal conductivity of amorphous
graphene at different temperatures.

6. Ref. [24]

In this manuscript, GPUMD has been used to obtain relaxed configurations in large-scale
graphene patches, which can then be used to determine the disorder experienced by the
charge carriers.
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